If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+60+100=0
We add all the numbers together, and all the variables
-16t^2+160=0
a = -16; b = 0; c = +160;
Δ = b2-4ac
Δ = 02-4·(-16)·160
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*-16}=\frac{0-32\sqrt{10}}{-32} =-\frac{32\sqrt{10}}{-32} =-\frac{\sqrt{10}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*-16}=\frac{0+32\sqrt{10}}{-32} =\frac{32\sqrt{10}}{-32} =\frac{\sqrt{10}}{-1} $
| 18=7r-18 | | -7(x-1)=-5)x-5) | | 3x×2=8x+4 | | 14-x=-3-18x | | 8(3x+28)=4(5x+64) | | -10x+28=8x+8 | | 10x+10=2x+34 | | x/12=6.4/10 | | 3(2)+4y=14 | | 7q+19=19 | | 7x+1+9x-7=360 | | x/12=64/100 | | 64/100=x/12 | | 1/4p=-1/6 | | 4b+6=2-b+2 | | 1/4p=1/4 | | 4(x-9)=4(+1/5x) | | c/6+4=-8 | | 5m-4m=7 | | 7x^2-10x=6 | | 6n=21*8 | | 3(30+)=4(x+19) | | 63-n=18 | | 2u−5=u | | 6/10=x/32 | | 4(3x+-1)+13=5x+2 | | 8c=7c+4 | | 15x+19=10x+19 | | 15x+19=10+19 | | 8v-7v=15 | | -3-6y=10+12y | | 14x+3=15-11x |